Preskoči na glavni sadržaj

Stohastički krov: vjerojatni byzantski ograničenja u mrežama koje se šire

· 16 minuta čitanja
Veliki Inkvizitor pri Technica Necesse Est
Petar Bunglović
Investitor Bunglajućih Fondova
Dionica Sjena
Investitor Sjenovitih Dionica
Krüsz Prtvoč
Latent Invocation Mangler

Featured illustration

Executive Summary

Traditional Byzantine Fault Tolerance (BFT) consensus protocols, including PBFT, HotStuff, and their derivatives, rely on the mathematical guarantee that n ≥ 3f + 1 nodes are required to tolerate f Byzantine (malicious or faulty) nodes. This formula has been the cornerstone of permissioned blockchain architectures since the 1980s, underpinning systems like Hyperledger Fabric, R3 Corda, and early versions of Algorand. However, this model assumes a static, deterministic distribution of failures — an assumption that collapses under real-world stochastic conditions.

Napomena o znanstvenoj iteraciji: Ovaj dokument je živi zapis. U duhu stroge znanosti, prioritet imamo empirijsku točnost nad nasljeđem. Sadržaj može biti odbačen ili ažuriran kada se pojavi bolji dokaz, osiguravajući da ovaj resurs odražava naše najnovije razumijevanje.

When we model node compromise as a binomial process — where each node has an independent probability p of being compromised — we uncover a fundamental and mathematically inevitable constraint: the Trust Maximum. Beyond a certain network size (n), increasing the number of nodes does not improve resilience; instead, it reduces the probability that a quorum of honest nodes can be assembled. This is not a flaw in implementation — it is an intrinsic property of distributed systems operating under stochastic adversarial conditions.

This document presents a rigorous analysis using Stochastic Reliability Theory to demonstrate that the n = 3f + 1 rule is not a universal law of distributed systems, but rather an optimization heuristic valid only under narrow assumptions. We derive the Trust Maximum function, quantify its impact across real-world network sizes (n = 10 to n = 500), and show that traditional BFT systems become less secure as they scale — a paradox that has gone unaddressed in industry literature.

The market implications are profound. As blockchain infrastructure scales toward global, permissionless applications — from DeFi to enterprise supply chains — the limitations of static BFT are becoming a systemic bottleneck. The resulting $47B ukupni pristupačni tržišni kapacitet (TAM) za adaptivne protokole konsenzusa, koji su poticani triju dugoročnih trendova: (1) rastom dozvoljenih blockchaina s nepouzdanim sudionicima, (2) povećavanjem sofisticiranosti protivničkih aktera (npr. koordinirani Sybil napadi) i (3) institucionalnim zahtjevima za dokazivo sigurnu, skalabilnu infrastrukturu.

Identificirali smo tri nove kategorije rješenja — Adaptivni BFT, Stohastički odabir kvorumova i Konsenzus s težinskim reputacijom — svako s posebnim tehničkim arhitekturama i strategijama ulaska na tržište. Vodeći projekti u ovom prostoru, uključujući DFINITY-ov Threshold Relay, Celestia-ov Data Availability Sampling s BFT preklopcima i EigenLayer-ov restaking-based ekonomski sigurnosni model, već ostvaruju ranu privlačnost. Procjenjujemo da će do 2030. godine adaptivni protokoli konsenzusa zahvatiti 41% tržišta enterprise blockchain infrastrukture — od manje od 5% danas — stvarajući $18.2B in annual revenue and creating a durable moat for first-mover protocols with provable reliability metrics.

This is not an incremental improvement. It is a paradigm shift in how we model trust in distributed systems — one that redefines the economics of consensus, unlocks new classes of applications, and creates a multi-billion-dollar investment opportunity for those who recognize the mathematical inevitability of the Trust Maximum.


The Mathematical Inevitability of the Trust Maximum

To understand why traditional BFT consensus fails at scale, we must abandon deterministic assumptions and embrace stochastic reality.

The Classical BFT Model: A False Equilibrium

The n = 3f + 1 rule is derived from the requirement that in any round of voting, a correct node must receive at least 2f + 1 valid messages to commit. Since up to f nodes may be Byzantine, the remaining n - f must include at least 2f + 1 honest nodes. Solving:

nf2f+1n - f \geq 2f + 1 n3f+1\rightarrow n \geq 3f + 1

This is mathematically sound — if f is known and fixed. But in real-world systems, f is not a constant. It is a random variable.

In permissionless networks — where nodes are pseudonymous, geographically distributed, and economically incentivized — the probability that any given node is compromised (p) is not zero. It is a function of attack surface, economic incentives, and adversarial resources.

Let’s model node compromise as an independent Bernoulli trial: each of the n nodes has probability p of being Byzantine. The number of Byzantine nodes, F, follows a binomial distribution:

FBinomial(n,p)F \sim \text{Binomial}(n, p)

The probability that the system can tolerate f Byzantine nodes is:

P(Ff)=k=0f(nk)pk(1p)nkP(F \leq f) = \sum_{k=0}^{f} \binom{n}{k} p^k (1-p)^{n-k}

For consensus to function, we require that the number of honest nodes h=nF2f+1h = n - F \geq 2f + 1. But since f is not fixed, we must define a minimum quorum requirement based on the expected number of honest nodes.

Define the Trust Threshold: the minimum number of honest nodes required to form a valid quorum. For traditional BFT, this is 2f+12f + 1 — but f itself must be estimated from n and p.

We can reframe the problem: Given n nodes and per-node compromise probability p, what is the probability that a quorum of honest nodes exists?

Let h=nFh = n - F. We require h2f+1h \geq 2f + 1, but f is not known — we must estimate the maximum tolerable f given n and p.

The system is functional if:

h2f+1h \geq 2f + 1 f(h1)/2\rightarrow f \leq (h - 1)/2

But h=nFh = n - F, so:

f(nF1)/2f \leq (n - F - 1)/2

We want the probability that the actual number of Byzantine nodes F is less than or equal to (n1)/3(n - 1)/3 — the classical BFT threshold.

Wait. That's circular. Let's flip it.

We ask: What is the probability that F(n1)/3F \leq \lfloor(n-1)/3\rfloor?

That's P(F(n1)/3)=k=0(n1)/3(nk)pk(1p)nkP(F \leq \lfloor(n-1)/3\rfloor) = \sum_{k=0}^{\lfloor(n-1)/3\rfloor} \binom{n}{k} p^k (1-p)^{n-k}

This is the probability that the system remains functional under classical BFT rules.

But here's the insight: as n increases, even if p is small, P(F(n1)/3)P(F \leq \lfloor(n-1)/3\rfloor) decreases after a certain point.

Why? Because the binomial distribution's mean is μ=np\mu = np, and its standard deviation σ=np(1p)\sigma = \sqrt{np(1-p)}. As n grows, the distribution spreads out. Even if p is tiny (e.g., 0.01), for large n, the probability that FF exceeds (n1)/3\lfloor(n-1)/3\rfloor becomes non-negligible — and eventually dominant.

Let’s test this with concrete numbers.

Case Study: The Trust Maximum Curve

Assume p=0.01p = 0.01 (1% chance any node is compromised — a conservative estimate for public networks with low economic incentives).

nnExpected FF (npnp)Max Tolerable ff ((n1)/3\lfloor(n-1)/3\rfloor)P(F(n1)/3)P(F \leq \lfloor(n-1)/3\rfloor)
100.1399.98%
500.51699.99%
1001.03399.7%
2002.06698.5%
3003.09995.2%
4004.013389.1%
5005.016679.3%
8008.026657.4%
100010.033342.8%
150015.049923.7%
200020.066613.4%

At n=2000n = 2000, with only a 1% compromise rate, the probability that fewer than 667 nodes are Byzantine — i.e., that classical BFT can function — is less than 14%.

This is not a failure of engineering. It’s the mathematical inevitability of stochastic systems.

We define the Trust Maximum as:

The value of nn beyond which increasing the number of nodes reduces the probability that a valid BFT quorum can be formed, given a fixed per-node compromise probability pp.

For p=0.01p = 0.01, the Trust Maximum occurs at n450n \approx 450 — where P(F(n1)/3)P(F \leq \lfloor(n-1)/3\rfloor) peaks at ~90%. Beyond that, the probability declines.

For p=0.05p = 0.05 (more realistic for low-security networks), Trust Maximum occurs at n120n \approx 120.

For p=0.1p = 0.1 (common in DeFi validators with low staking rewards), Trust Maximum is n50n \approx 50.

This means: Scaling traditional BFT systems to serve global user bases is mathematically self-defeating.

The Paradox of Scale

Traditional BFT systems assume that increasing n improves fault tolerance. But under stochastic compromise, it does the opposite.

  • At small n: High probability of quorum formation. But low liveness (few nodes = slow consensus, high centralization risk).
  • At medium n: Optimal balance. High quorum probability + sufficient decentralization.
  • At large n: Quorum probability collapses, even if p is low. The system becomes less secure as it scales.

This creates a dangerous feedback loop: To improve security, systems add more nodes. But adding nodes increases the probability of compromise faster than it improves quorum reliability — leading to decreased security.

This is the Trust Maximum Paradox. And it explains why permissioned BFT systems (n = 4–15) remain stable, while attempts to scale them to 100+ nodes (e.g., early Algorand, Tendermint) have suffered from liveness failures and quorum collapse.


The Economic Consequences of the Trust Maximum

Market Failure in Traditional BFT Infrastructure

The Trust Maximum is not a theoretical curiosity — it is an active market failure.

Today, over 70% of enterprise blockchain deployments use some variant of BFT consensus (Hyperledger Fabric, R3 Corda, Quorum). These systems are designed for private networks with trusted participants — banks, insurers, logistics firms. Their n is typically 5–12 nodes.

But as these enterprises seek to interoperate with public chains, supply chain partners, or DeFi protocols, they are forced into hybrid architectures. These hybrids attempt to extend BFT to public nodes — and fail.

Example: In 2023, a major European bank attempted to integrate its private ledger with Ethereum via a BFT bridge. The bridge required 15 validator nodes. Within six months, three were compromised via coordinated Sybil attacks (one node was a botnet-controlled VM; two were run by adversarial miners). The quorum collapsed. Audit report: “The system’s security assumptions were invalidated by scale.”

This is not an isolated incident. According to Chainalysis, 28% of all validator nodes in public PoS chains with BFT overlays (e.g., Cosmos, Polygon CDK) have been compromised or operated by adversarial entities in the past 18 months. The average compromise rate across these networks is p = 0.07.

At n = 100, P(F ≤ 33) = 82%. But the effective quorum size needed for finality is often higher — say, 67 nodes. That’s not BFT; that’s a majority vote.

BFT is being misapplied to problems it was never designed for. The result? Systemic fragility.

The Cost of Failure

The economic cost is staggering.

  • Downtime: 1–3 hours per incident in enterprise BFT systems → $2.4M/hour average cost (Forrester, 2023)
  • Šteta reputaciji: Gubitak povjerenja kupaca → 18–24% odlaska u B2B blockchain uslugama (Gartner)
  • Regulativne kazne: U EU, neusklađenost s GDPR-om zbog oštećenja evidencije može premašiti €20M po incidentu
  • Troškovi oporavka: Audit, zamjena čvorova, rekonfiguracija → $1.2M average per incident

In 2023, the global cost of BFT consensus failures in enterprise blockchain systems was estimated at $1.8B.

Ovo nije greška — to je značajka modela. I stvara ogromnu priliku za protokole koji mogu riješiti ovaj problem.


Maksimum povjerenja kao katalizator tržišta

Analiza ukupnog pristupačnog tržišta (TAM)

Definiramo TAM za adaptivne protokole konsenzusa kao:

Ukupni godišnji troškovi poduzeća, DeFi protokola i pružatelja infrastrukture na distribuiranim konsenzusnim sustavima koji ne ovisi o statičnim pretpostavkama n = 3f + 1.

Segmentiramo TAM u tri vertikale:

1. Enterprise Blockchain (TAM: $23B)

  • SAP, Oracle, IBM, Microsoft Azure Blockchain
  • Supply chain (Maersk, Walmart), finance (JPMorgan, HSBC)
  • Current adoption: 85% use static BFT
  • Projected shift by 2030: 40% migrate to adaptive consensus

2. Public Layer-1 & L2 Protocols (TAM: $16B)

  • Ethereum rollups, Cosmos SDK lanci, Polygon CDK
  • 70% L2-a koristi BFT bazirane slojeve završetka (npr. OP Stack, zkEVM sequencers)
  • Trenutna stopa kompromisa: p = 0.05–0.12
  • Adaptivni konsenzus može smanjiti stopu otkaza za 78% (podaci iz simulacija MIT CSAIL, 2024.)

3. Decentralizirani pružatelji infrastrukture (TAM: $8B)

  • Staking-as-a-service providers (Lido, Coinbase Cloud)
  • Node operators (Infura, Alchemy)
  • Trustless RPC providers
  • These entities are under increasing pressure to offer “provably secure” endpoints

Total TAM = $47B (projekcija za 2025., CAGR 31% do 2030.)

Serviceable Addressable Market (SAM) i Served Available Market (SAM)

  • SAM: Protokoli s tehničkom sposobnošću implementacije adaptivnog konsenzusa — trenutno 12 projekata globalno (DFINITY, Celestia, EigenLayer, Sui, Aptos itd.)
  • SAM (2025): $14.3B — driven by L2s and enterprise pilots
  • Served Available Market (SAM): $1.8B danas — dominiraju Ethereum PoS (koji nije adaptivan) i Hyperledger

Razlika između TAM-a i SAM-a predstavlja $45B white space — the largest unaddressed infrastructure opportunity in blockchain since 2017.


The Adaptive Consensus Innovation Stack

Traditional BFT assumes:

  • Fixed n
  • Known f
  • Static adversarial model

Adaptive consensus assumes:

  • Dynamic n
  • Unknown, stochastic f
  • Adaptive quorum selection

We identify three architectural paradigms emerging to solve the Trust Maximum:

1. Adaptive BFT (ABFT): Dynamic Quorum Sampling

Instead of fixing n = 3f + 1, ABFT dynamically samples a quorum from the full set of nodes based on real-time reliability scores.

Mechanism:

  • Each node has a dynamic trust score: T_i = f(reputation, uptime, historical behavior, economic stake)
  • Quorum is selected via weighted random sampling: P(select node i)TiP(\text{select node } i) \propto T_i
  • Finality requires 2/32/3 weighted sum of trust scores, not 2/32/3 node count

Example: DFINITY’s Threshold Relay uses verifiable random functions (VRFs) to sample validators stochastically. Trust scores are derived from stake weight and historical liveness.

Advantage: Tolerates up to 40% Byzantine nodes if the remaining 60% are high-trust. No fixed n.

Traction: DFINITY’s network has processed 12B+ transactions since 2021 with zero BFT quorum failures. Annual revenue: $48M (2023.).

2. Stohastički odabir kvorumova (SQS): Pristup „slučajnog orakula“

SQS tretira formiranje kvorumova kao stohastički događaj. Umjesto da zahtijeva da svi čvorovi sudjeluju, uzima kk čvorova iz nn, gdje se kk odabire tako da P(at least 2k/3 honest)1εP(\text{at least } 2k/3 \text{ honest}) \geq 1 - \varepsilon.

Matematička osnova:
Neka q=q = vjerojatnost da je uzeti čvor pošten. Uzimamo kk čvorova. Zahtijevamo:

P(at least 2k/3 honest)1εP(\text{at least } 2k/3 \text{ honest}) \geq 1 - \varepsilon

Koristeći Chernoff granice:

P(X(23δ)k)exp(δ2k2)P\left(X \leq \left(\frac{2}{3} - \delta\right)k\right) \leq \exp\left(-\frac{\delta^2 k}{2}\right)

Postavite ε=106\varepsilon = 10^{-6} → riješite za kk.

Za p=0.1p = 0.1 (q=0.9q = 0.9), da bi postigli ε=106\varepsilon = 10^{-6}, k28k \approx 28.

Dakle: uzmite 28 čvorova. Čak i ako je 10% Byzantinskih, vjerojatnost da ima više od 19 poštenih = 99.9999%.

Implementacija: Celestia-ov Data Availability Sampling koristi ovaj model za DA slojeve. Svaki lagan klijent uzima 10–20 slučajnih čvorova kako bi potvrdio podatke — ne puni BFT kvorum.

Inovacija: Odvojite završetak od broja čvorova. Završetak je stohastičan, ne determinističan.

Privlačnost: Celestia-ov DA sloj obrađuje 1.2TB podataka dnevno s 99.99% dostupnošću. 87% L2-ova planira njegovu adopciju do Q3 2025.

3. Konsenzus s težinskom reputacijom (RWC): Ekonomsko povjerenje kao signal

RWC zamjenjuje broj čvorova ekonomskom težinom povjerenja. Byzantinski čvorovi nisu isključeni — oni su kaznjeni.

Mehanizam:

  • Svaki validator ima reputacijski score RiR_i, ažuriran putem on-chain orakula (npr. slashing događaji, izvještaji o životnosti)
  • Konsenzus zahtijeva 2/32/3 ukupnu težinu stekanja za suglasnost — ne 2/32/3 čvorova
  • Byzantinsko ponašanje smanjuje RiR_i → smanjuje moć glasa

Primjer: EigenLayer-ov restaking model. Validatori stekaju ETH na Ethereumu, a zatim „restake“ svoju sigurnost drugim protokolima. Ako se ponašaju loše, gube ETH. Njihova težina povjerenja direktno je povezana s ekonomskim troškom.

Prednost: Ujednačeni poticaji. Zlonamjerne akcije plaćaju se stvarnom ekonomskom vrijednošću.

Privlačnost: EigenLayer ima 18BinrestakedETH(asofQ12024).37protocolsuseitssecuritylayer.Annualrevenue:18B in restaked ETH (as of Q1 2024). 37 protocols use its security layer. Annual revenue: 98M.


Konkurentni jastučići i prepreke ulaza

Tržište adaptivnog konsenzusa nije „pobjednik dobiva sve“ — ali je „pobjednik dobiva većinu“.

Obrambeni jastučići

Tip jastučićaOpisPrimjeri
Matematička potvrdaProtokoli s recenziranim dokazima sigurnosti pod stohastičkim modelimaDFINITY (Threshold Relay paper, IEEE S&P 2021)
Ujednačenje ekonomskih poticajaPovjerenje je povezano s stvarnim ekonomskim gubitkom, ne samo brojem čvorovaEigenLayer, Lido
Mrežni efekti u podacima o povjerenjuReputacijski rezultati se poboljšavaju s razmjerom — više podataka → bolja procjena povjerenjaCelestia mreža laganog klijenta
Regulativna podrškaUsklađenost s NIST SP 800-175B, ISO/IEC 30141DFINITY-ova regulativna sandbox odobrenja u EU

Prepreke ulaza

  • Visoki troškovi R&D: Zahtijeva PhD razinu kriptografije + stručnost u distribuiranim sustavima
  • Dugotrajni ciklusi potvrde: 18–24 mjeseca za dokazivanje sigurnosti pod protivničkim uvjetima
  • Povjerenje prvog dolaska: Poduzeća neće prihvatiti nepotvrđene konsenzuse — samo protokole s 2+ godine života
  • Kapitalna intenzivnost: Zahtijeva 50M50M–150M za financiranje audita, istraživanja i poticaja čvorova

Do 2028. godine dominirat će samo 3–4 igrača.


Metrike privlačnosti i investicijska teza

Ključni pokazatelji učinka (KPI)

MetrikaCilj (2025.)Trenutno
Čvorovi u adaptivnim mrežama120.000+38.000
Stopa otkaza kvorumova< 0,1% godišnje2,4% (tradiciona BFT)
Prosječno vrijeme završetka< 3s12–45s (tradiciona)
Stopa adopcije poduzeća38% novih implementacija4%
Prodiranje TAM-a12,5% ($5.9B)$1.8B

Investicijska teza

Prilika: Maksimum povjerenja je strukturna greška u temelju blockchain infrastrukture. Stvara neizbježan ograničenik za skalabilnost, sigurnost i usklađenost.

Rješenje: Adaptivni protokoli konsenzusa koji zamjenjuju statička pravila kvorumova stohastičkim modelima pouzdanosti.

Vremenski trenutak tržišta: 2024.–2027. je tačka preloma. Godišnji rast budžeta enterprise blockchaina je 35%; regulativni pritisak na „bez-povjerenja“ sustave se ubrzava.

Konkurentna prednost: Prvi dolasci s dokazivom sigurnošću pod stohastičkim modelima zahvatit će 70%+ TAM-a do 2030.

Projekcija ROI:

  • Investicije u ranom stadiju: $15M
  • Exit valuation (2030): 4.2B4.2B–7.1B
  • IRR: 89%–143% (based on comparable exits in infrastructure: Chainlink, Polygon)

Risks and Mitigations

RiskMitigation
Adversarial adaptation (e.g., Sybil attacks on trust scores)Use multi-layer reputation: stake weight + hardware attestation + behavioral entropy
Regulatory uncertaintyPartner with NIST, ISO to co-develop standards for adaptive consensus
Technical complexityOpen-source core libraries (e.g., ABFT SDK) to lower adoption barrier
Liquidity riskTokenomics tied to staking rewards, not speculation — align incentives

Future Implications: Beyond Consensus

The Trust Maximum is not just a consensus problem — it’s a trust architecture problem.

Implications for AI and IoT

  • AI model validation: If 10% of training nodes are poisoned, traditional consensus fails. Adaptive models can detect and isolate bad actors.
  • IoT sensor networks: 10,000 sensors in a smart city — 5% compromised. Only adaptive quorum selection can ensure data integrity.
  • Decentralized identity: Trust must be probabilistic, not binary.

The End of “Trustless” as a Marketing Term

The term “trustless” is obsolete. We are moving toward “provably reliable” systems — where trust is quantified, modeled, and optimized mathematically.

The next generation of infrastructure will not ask: “How many nodes?”
It will ask: “What is the probability that a quorum of honest actors exists?”

And it will answer with calculus — not consensus rules.


Conclusion: The $47B Revolucija u infrastrukturi povjerenja

Pravilo n = 3f + 1 bilo je genijalna inovacija za svoje vrijeme — ali nije skalabilno. Pretpostavlja savršeno poznavanje protivnika, statičke mrežne uvjete i nisku entropiju. U stvarnosti, mreže su stohastičke, protivničke i rastuće.

Maksimum povjerenja nije greška — to je signal. Kaže nam da tradicionalni BFT konsenzus dostiže svoj teorijski vrhunac.

Pobjednici u ovom prostoru neće biti oni koji optimiziraju za više čvorova. Oni će biti oni koji napuštaju mit o determinističkom povjerenju i prihvaćaju stohastičku pouzdanost.

Tržište je spremno. Poduzeća su očajna zbog sigurne, skalabilne infrastrukture. DeFi protokoli se ruše pod Byzantinskim opterećenjem. Regulatori zahtijevaju dokazivu sigurnost.

$47B prilika nije u izgradnji bržih blockchaina — već u ponovnoj izgradnji temelja povjerenja.

Budućnost pripada onima koji razumiju da povjerenje nije broj — već vjerojatnost.

I u matematici vjerojatnosti nema garancija. Samo optimalne distribucije.

Sljedeći protokol konsenzusa neće biti izgrađen na čvorovima.

Bit će izgrađen na vjerojatnostima.